25 research outputs found

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    A Bayesian Approach to Inferring Rates of Selfing and Locus-Specific Mutation.

    Get PDF
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about reproduction under pure hermaphroditism, gynodioecy, and a model developed to describe the self-fertilizing killifish Kryptolebias marmoratus. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens sampling formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet process prior model. Our sampler is designed to accommodate additional information, including observations pertaining to the sex ratio, the intensity of inbreeding depression, and other aspects of reproduction. It can provide joint posterior distributions for the population-wide proportion of uniparental individuals, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual. Further, estimation of all basic parameters of a given model permits estimation of functions of those parameters, including the proportion of the gene pool contributed by each sex and relative effective numbers

    Sex-Specific Incompatibility Generates Locus-Specific Rates of Introgression Between Species

    Get PDF
    Disruption of interactions among ensembles of epistatic loci has been shown to contribute to reproductive isolation among various animal and plant species. Under the Bateson–Dobzhansky–Muller model, such interspecific incompatibility arises as a by-product of genetic divergence in each species, and the Orr–Turelli model indicates that the number of loci involved in incompatible interactions may “snowball” over time. We address the combined effect of multiple incompatibility loci on the rate of introgression at neutral marker loci across the genome. Our analysis extends previous work by accommodating sex specificity: differences between the sexes in the expression of incompatibility, in rates of crossing over between neutral markers and incompatibility loci, and in transmission of markers or incompatibility factors. We show that the evolutionary process at neutral markers in a genome subject to incompatibility selection is well approximated by a purely neutral process with migration rates appropriately scaled to reflect the influence of selection targeted to incompatibility factors. We confirm that in the absence of sex specificity and functional epistasis among incompatibility factors, the barrier to introgression induced by multiple incompatibility factors corresponds to the product of the barriers induced by the factors individually. A new finding is that barriers to introgression due to sex-specific incompatibility depart in general from multiplicativity. Our partitioning of variation in relative reproductive rate suggests that such departures derive from associations between sex and incompatibility and between sex and neutral markers. Concordant sex-specific incompatibility (for example, greater impairment of male hybrids or longer map lengths in females) induces lower barriers (higher rates of introgression) than expected under multiplicativity, and discordant sex-specific incompatibility induces higher barriers

    The genetics of altruism

    No full text

    Evolutionary Dynamics of Dual-Specificity Self-Incompatibility Alleles

    No full text

    The Evolution of Population Biology

    No full text
    xxix,450 hal,;ill,;21 c
    corecore